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A family of cell-centered genuinely multidimensional upwind schemes for
structured meshes is developed. Two different approaches for the numerical
flux formulation are applied, based on respectively characteristic variable ex-
trapolation and flux extrapolation. The latter is developed within the context
of the unified central/dissipation formulation of classical central and upwind
schemes. The numerical flux is based on a 4-wave decomposition model of
the 2D Euler equations using two arbitrary characteristic directions. A gen-
eral theoretical analysis of linear convection schemes is the framework for the
development of first- and second-order multidimensional upwind schemes. A
monotone second-order zero cross-diffusion algorithm is developed introduc-
ing classical limiters with multidimensional ratios assuring the monotonicity
property. Several combinations of algorithms with different characteristic
directions are tested using a multigrid solver. Results near discontinuities
are showing a sharper resolution than grid aligned methods. A significant
improvement is obtained with the central/dissipation approach concerning
robustness and flexibility for implementation of multidimensional methods in
standard codes.

1. INTRODUCTION

Algorithms with a genuinely multidimensional upwind approach for solving the
Euler/Navier-Stokes equations form the subject in this paper. This new ap-
proach aims at reducing the mesh dependency introduced by classical schemes

that are based on the dimensional splitting approach.

A family of 2D multidimensional upwind schemes have been developed in the
past using a cell-centered finite volume approach on structured meshes HIRSCH
& LAcoR [4], LAcoRr & HirscH [7]. The basic theoretical framework developed
by HIRSCH [5] is the optimal diagonalization of the Euler equations into 4 wave
equations using a specific choice of two characteristic directions depending on
the local flow gradients. HIRSCH & LACOR [4] developed a conservative scheme
with the numerical flux evaluated using characteristic MUSCL extrapolation,

29



i.e. variable extrapolation along the characteristic propagation directions. This
leads to a family of first and second-order accurate schemes with an improved
accuracy compared to classical methods. Since the higher-order characteristic
MUSCL was too expensive, alternative second-order more compact schemes
have been looked for by VAN RANSBEECK [13].

A general theoretical study of 2D linear compact convection algorithms is
developed by HIRSCH [3]. Based on the truncation error expansion of a gen-
eral 9-point molecule, conditions concerning accuracy, monotonicity and cross-
diffusion are determined for families of 6- and 4-point molecules.

In comparison with the characteristic variable extrapolation, a new numeri-
cal flux formulation based on multidimensional flux extrapolation is developed.
The resulting numerical flux is written as a central flux with additional dis-
sipation terms. It forms a unified approach for the classical central and up-
wind schemes including TVD high resolution schemes, HIRSCH [2], SWANSON
& TURKEL [11]. In the standard methods, the multidimensional problem is
solved by a superposition of 1D dissipation models based on differences along
the mesh lines. The genuinely multidimensional schemes to be discussed have
additional dissipation terms containing mixed differences representing the mul-
tidimensional character.

A unique zero cross-diffusion scheme is developed from the theoretical con-
vection analysis, being second-order accurate for the homogeneous convection
equation. Based on similar ideas as for classical second-order TVD high reso-
lution schemes, the second-order zero cross-diffusion scheme is made monotone
by rewriting it as a correction to a 2D monotone first-order scheme, modified
by introducing non-linear limiters to ensure the monotonicity property.

The extension to the 2D Euler equations is based on a generalized form of
the 4 wave decomposition method by introducing two arbitrary characteristic
directions. This allows the investigation of different directions for optimization
of the multidimensional schemes.

Results are obtained with the CWI adaptive multigrid solver described in
VAN DER MAAREL, HEMKER & EVERAARS [12]. The multigrid structure is
combined with a simplified implicit operator based on a conservative lineariza-
tion of the standard first-order upwind Flux Difference Splitting scheme. In
comparison with classical methods, inviscid results will be shown for a subsonic
and supersonic test case on fully refined meshes.

2. 2D UPWIND CONVECTION ALGORITHMS

2.1. Linear convection analysis

The main elements of a general theoretical analysis of the two-dimensional up-
wind schemes for the linear non-homogeneous convection equation, HIRSCH [3]
are repeated below. It is derived for compact molecules not exceeding nine
points. The analysis relies on the properties of the truncation error expansion,
taking as starting point the computational nine-point stencil with arbitrary
coefficients. Writing out the Taylor expansion for the convection equation,
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some of the coefficients are specified as to satisfy the consistency conditions.
General conditions are defined for properties such as second-order accuracy,
monotonicity, cross-diffusion and relations between some of these conditions
are determined. For the non-homogeneous equation the condition of vanish-
ing cross-diffusion is less severe than that of second-order accuracy. For the
homogeneous equation the condition of zero cross-diffusion is equivalent with
the condition of second-order accuracy. The study introduces several families
of schemes based on 6-point and 4-point molecules.

A finite volume formulation of the convection algorithm is considered, within
a cell-centered approach for structured meshes. Considering the same mesh
spacing equal to 1 in both directions, the discretized convection term in cell
(¢,7) is written as

aug + buy = a(uiyi/o,; — wim12,5) + (Wi jr172 — wij_1/2) (1)

where the approximations selected for the cell face values u;1; /o ; and u; j11/2
characterize the schemes. The notation used in (1) is clarified by Figure 1.

FIGURE 1. Cell-centered finite volume formulation.

Defining upwind convection schemes for a,b > 0, we can focus the analysis
to smaller molecules of respectively 6 and 4 points in the upwind direction,
with respect to point 0. In the former case, points 0, 1, 2, 3, 4 and 5 will be
involved, while in the latter case, only points 0, 1, 2, 3 contribute to the scheme.
In order to introduce multidimensional couplings in the upwind schemes, the
cell face values should therefore be made dependent on several nodal values.
If u;_y1/9,; is made dependent on the nodal values at points 1, 2 and 3, the
resulting scheme will involve 6 points. Hence, for 4-point molecules, u;_; /2 ;
should depend only on the nodal values at points 1 and 3. In the following the
family of 4-point molecules will be considered.
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2.2. Upwind schemes for 4-point molecules
The 4-point molecules, for a,b > 0, are defined by the following extrapolation
formulae, illustrated in Figure 2a,

Uj—1/2,7 = U1 — a(u1 - u3) (2)

Ujj—1/2 = U2 — 5(“2 - U3)

FIGURE 2. The 4-point molecules for linear convection schemes.

Writing out (1) with the use of (2) and representing the combination (ac« + bé)
by a parameter A, the 4-point convection scheme is uniquely defined in Figure
2b. It is important to observe, that we have actually a one-parameter family
of schemes, although the parameters a and é can be chosen independently.
Several interesting schemes are recovered by choosing a particular value of A
as shown by HirscH [3]:

monotone 1st order :0 < A <min(a,b)
b (3)
‘2nd order’ zero cross diffusion : A= a —2+_

Concerning the monotone first-order scheme the lower limit corresponds to the
first-order classical upwind scheme that has maximum cross diffusion. The up-
per limit represents the minimum cross diffusion scheme similar to the scheme of
RICE & SCHNIPKE [8]. This scheme has been applied in e.g. LACOR & HIRSCH
[7] and showed indeed a marked improvement in shock resolution, compared
to standard first-order flux splitting methods. The unique non-monotone zero
cross-diffusion scheme, can be considered as the only second-order compact
4-point scheme in space for the homogeneous convection equation. The mono-
tone minimum cross diffusion scheme and the non-monotone zero cross diffu-
sion scheme have also been investigated by SIDILKOVER [9] under the names of
respectively N-scheme and 2D scheme.

Considering the case a, b > 0 we can reformulate the general 4-point molecule
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from Figure 2b by splitting the central part and dissipation term. Introducing
difference operators in e.g. the z-direction by

Opllij = Uit1,j = Win1,j; O3 Uij = Wit1,j — Uiy, Op Uij = Uij — Ui—1,; (4)
the residual is rewritten,
(aby + bby — $(aby 65 + b6, 65 +2A676,)) us; (5)

The dissipation term in (5) comnsists of classical 2nd difference terms along
the mesh lines coming from the classical first-order upwind scheme and an
additional mixed second difference representing the multidimensional upwind
character.

3. DISSIPATION OF MULTIDIMENSIONAL CONVECTION SCHEMES

The family of linear 4-point convection schemes described in section 2.2 for
positive convection speeds is reformulated for all combinations of signs of a
and b. The numerical flux at e.g. i +1/2,j is defined as

P 4 b~ - Y A —
i+35 =9 <T“i+§,j gty T (Gt 7ui+%,j> (6)
where the superscripts of the interface states represent the signs of the cor-
responding components a,b. The interface states are determined using the
generalized form of the extrapolation formulae (2). Introducing the splitting
of central and dissipation part of the numerical flux,

frajey = 30w +uir1j) — digya; (7)

di1/2,5 = 5Bit1/2,i0Uit1/2,5 (8)
the numerical dissipation is given by

bt b~
di+1/2,j = %|a|(5ui+1/2,j +a {GJF <T6ui,j—1/2 - T‘sui,j+1/2

+ - (9)
_ (b b
+a 76ui+1,j71/2 - 76Ui+1,j+1/2

with 6u;p1/2,; = wiy1; — i and Ou;j11/2 = Ui j+1 — w4 j. Introducing 2D
ratios the dissipation (9) can be rewritten in the form of (8). In contrast with
a 1D definition of R, built up by 2 consecutive flux differences taken along the
same mesh line, one can define 2D ratios based on flux differences in the two
mesh directions. This 2D definition introduces the dependence on the sign of
both velocity components a and b of the convection speed, where the ratio is
defined in a 2D upwind manner relative to the direction of convection speed.
Different ratios have been investigated by SIDILKOVER [9], HIRSCH & VAN
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RANSBEECK [6]. In contradiction with the former, the latter introduced a new
2D ratio which is related to the definition of the dissipation formulation (8).
The 2D ratio is defined such that a compact formulation is recovered which is
not the case in the 1D formulation. As a result, the six surrounding cell-centers
of the wall are considered for the determination of the ratio. Four ratios are
defined for every wall, depending each on one of the 4 combinations of the signs
of a and b, as shown in Figure 3,

FIGURE 3. 2D definition of ratios.

where the superscripts of R represent the signs of the corresponding components
a,b. The corresponding formulae are given by,

R+ . = b bus1y2 o bbuigpg
i+1/2,5 a+6ui+1/27j, i+1/2,5 — a+6ui+1—/2,j
(10)
—+ _ i+1,j-1/2 - B i+1,54+1/2
Ri+1/2,j - ) Ri+1/2,j =

a‘&ui+1/2,j a_éui+1/2,j

The resulting dissipation coefficient 3 based on flux extrapolation is determined

from (8)-(10),

a
Bit1/2,5 = la| — 20%‘1’(32'“/24)
(11)
®(R)=a™(R*"" —R*")+a (R~ —R 1)
In the non-linear case a Roe type linearisation is introduced in (10)-(11) by e.g.

+ _ o+ + _ gt
6 i+1/2,5 ai+1/2,j5“i+1/2,jv 6gi,j+1/2 = bi,j+1/25“i,j+1/2 (12)

The value of the coefficient o in (11) corresponds to the interpolation coefficient
in (2) and is determined by the parameter A in (3) that represents a specific
multidimensional convection scheme. The interpolation coefficients o and 6 for
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the monotone minimum cross diffusion scheme and second-order non-monotone
zero cross diffusion scheme are chosen by

L |b] L |a|
Amo = —min [ 1,— |, 6mo = —min |1, —
2 |a] 2 |b]

1 o] 1]a|
a

anmozi_ T

I =
| | ) nmo 2 |b|
4. MONOTONE SECOND-ORDER ZERO CROSS DIFFUSION SCHEME

4.1. High resolution and monotonicity

The compact scheme with zero cross diffusion introduced in Sections 2.2 and
3 will be more accurate than its first-order monotone counterparts. However,
being non-monotone, it will generate oscillations at discontinuities. The tech-
nique for avoiding this situation and for generating high resolution schemes
without numerical oscillations is well developed for classical second-order TVD
high resolution schemes, HIRSCH [2]. The basic ideas can be extended for mul-
tidimensional schemes. They consist of: i) selecting a first-order monotone
numerical flux; ii) extending the numerical flux to second-order accuracys; iii)
restricting the amplitude of the gradients appearing in the additional term
via non-linear multidimensional limiters, such as to assure the monotonicity
property.

Based on the extrapolation formulae (2), the non-monotone zero cross dif-
fusion scheme can be written as a correction to a first-order multidimensional
monotone scheme where the additional term is limited in a non-linear way to
assure a monotone zero cross diffusion scheme. Consider the linear case a,b > 0,

it1/2, = fil172,5 = W(Onmo = Cmo)iv1/2,i80i -1/ 14
!ij-j_l/g = gzgfl/g - b(5nmo - 5mo)¢i,j+1/25ui—1/2,j
with
2.5 = wuiy — aomoBus i1z 15)

*mo — L. X i
gi,j+1/2 - buz,] bémoéuzfl/Z,]

where mo, Anmo and 6mo, dnmo are determined by e.g. (13), and 9 represents
a limiter.

For one-dimensional flows, the concept of TVD, Total Variation Diminishing,
has been developed (see for instance HIRSCH [2]), leading to the introduction
of non-linear limiters. Unfortunately, this concept does not appear to be well
adapted for multidimensional flows, as shown by GOODMAN & LEVEQUE [1],
although the ad-hoc application of the one-dimensional TVD approach, coupled
to directional splitting of the convective fluxes, gives excellent results in prac-
tical codes. It is therefore appropriate, for multidimensional configurations, to
apply alternative criteria.
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A straightforward definition of monotonicity to be considered in a multidi-
mensional framework can be obtained by the approach of SPEKREIISE [10],
which appears as best suited in the present context. Based on the condition
that the sum of the coefficients of the 9-point molecule in Figure 1 has to be
zero, the schemes are monotone or positive if all coefficients except at point 0
are of the same sign. This is the definition applied by SPEKREIJSE [10], where
it is shown that a 1D monotone scheme is TVD, while this is not necessarily the
case in 2D. The important consequence of the monotonicity condition is that
the steady state solution at (7, j) is a bounded average of the surrounding mesh
point values. Therefore, no over- or undershoots can appear in the solution.

4.2. Multidimensional limiters
The limiter function v in equation (14) is acting on a 2D ratio. Two definitions
of ratios for a,b > 0 are introduced, e.g. at wall i — 1/2, j in Figure 4,

FIGURE 4. Definition of multidimensional ratios.

where ¥ represents the ratio investigated by SIDILKOVER [9] and 7P is the
ratio developed by HIRSCH & VAN RANSBEECK [6]. They are formulated by

VYio172, = (ri_1725) with
o5 _ausmw)  po o alug—w) (16)
i—1/2,j b(ul _ US) ) i—1/2,5 b(ul _ U3)

In the context of the central/dissipation splitting the definition of 7 is most
suitable and is used in the present paper. The superscript D has been dropped
for clarity. In order to achieve a monotone second-order zero cross diffusion
scheme (14), HIRSCH & VAN RANSBEECK [6] showed that the multidimensional
limiter ¢ is equal to a classical limiter based on the multidimensional ratio
considered, that fulfills
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¥(r)

r

0<wr <2, 0< T <2 (17)
4.8. Equivalent dissipation terms
Introducing the central/dissipation approach (7)-(8) in the numerical flux of
the monotone zero cross diffusion scheme (14) for the linear case a,b > 0, the
dissipation is given by
diZ+Ci/2,j = %|a|§ui+1/2,j + a*(amo + (¥nmo — amo)"b("‘;ﬁ/z’j))&ui,j—l/? (18)
A new ratio R is derived and the symmetry property of the classical limiters is
introduced,
1 1o ()
R=—) 9(R)=y(2)="" (19)
where R corresponds to the definition in Figure 3 and (10). As a result the
dissipation term (18) is written as,

1
dizﬁ/z,j = §|a|5ui+1/2,j (20)
20
a
+a+% (amoleI::i/Zj + (anmo - Oémo)’lb(R;-:_E’j)) 6ui+1/2,j

Considering the four possible combinations of signs of a and b, a general for-
mulation of the dissipation coefficient is derived

a
/Biz«|»clv/2,j = |a| — 2% (Oémo(ﬁ(RH_l/Q,j) + (anmo - am0)¢(¢(Ri+1/2,j))) (21)

where the function ® is determined by (11).
5. DECOMPOSITION OF THE EULER EQUATIONS

The theoretical diagonalisation based on characteristic theory, HIRSCH [5] is
reformulated in a general way by considering the arbitrary choice of two char-
acteristic directions. The quasi-linear formulation of the 2D Euler equations
can be derived from the conservative differential form,

ou oF 0G oU oU ou
—+——+——=—+4+A—+B—=0 22
ot " oxr "oy ot T Cax Uy (22)
based on the conservative variables U, with F', G representing respectively the
flux vectors in the x - and y - direction with corresponding Jacobians A and
B. A similarity transformation based on two arbitrary characteristic directions
K1, Ko, is defined by

—

P* " Y(ky, ko) AP* (K1, k) = K(k1, ko) + C(k1, K2) (23)
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where P* is the transformation matrix with columns representing the right
eigenvectors of the Jacobian. The diagonal matrix X and the non-diagonal
matrix C represent respectively the characteristic propagation speeds of the
diagonalisation and the source or coupling matrix. A set of characteristic vari-
ables can be constructed such that

oW = P*~1oU (24)

Using equations (23) - (24), the Euler equations (22) are recast into the follow-
ing set of characteristic compatibility equations

%—Vf + (AV)W + (CV)W =0 (25)

The corresponding expressions of Jacobians, eigenvectors, eigenvalues and char-
acteristic variables are presented explicitly in HIRSCH, LACOR & DECONINCK
[5]. They show that the source terms in (25) are identical to zero if the two
characteristic directions are chosen such that

Ry X Vp=0, #.(R.V)F—V.5=0 (26)

The first characteristic direction is chosen along the pressure gradient and the
second one is related to the strain rate tensor. Taking the characteristic direc-
tions along the gridnormals results in the standard diagonalisation of the linear
combination of the Jacobians with the gridnormal, YEE [14],

PLYAR)P* =K.7 (27)
6. NUMERICAL FLUX FORMULATION

6.1. Characteristic MUSCL extrapolation

The characteristic system of non-linear scalar convection equations (25) with
possible source terms is discretized using a cell-centered finite volume approach
for structured meshes. An upwind discretization is used for the convective part
and a central scheme for the possible coupling terms. The general formulation
of the numerical flux based on the characteristic MUSCL extrapolation derived
by HIRSCH & LACOR [4], is written as

. 1= o .
(F'")i+1/2,j = E(Fi+1/2,j + Fi+1/2,j)'ni+1/2,j
Lpx At W W (28)
T2t ir1/2,5 | i+1/27j( i+1/2,5 i+1/2,j)
where W and W are the interface values with the superscripts +

i+1/2,5 i+1/2,5
and — indicating upwind and downwind extrapolations with respect to the

direction of the outward pointing unit normal 77 on the cell face. Notice that
the characteristic variables W, the eigenvectors P* and eigenvalues A.7l are
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based on Roe averages and two arbitrary characteristic directions k1, k3 on the
appropriate wall. The first term between brackets in the right-hand-side of (28)
is calculated using

(Fi'ﬁ)i+1/2,j = F-ﬁ(Uif_Ug,j)
Ui++1/2,j =Ui; + P*(Wiil/lj - Wi;) (29)
Uiiryz, = Uirrs + PXWi o = Wit )

that is based on (24). The variations of the characteristic variables in (28) - (29)
are obtained using one of the compact multidimensional convection algorithms
from Section 2 under the form of variable extrapolation. The determination
of left and right state corresponding to a chosen algorithm depends on the
characteristic propagation directions,

XU =X@) =5, XO) =5+ cky, X&) =7 — ckp (30)

with X(®) the propagation direction corresponding to component w* of .

The classical first-order upwind scheme based on flux difference splitting is
recovered from (28) by considering the grid normals as the two characteris-
tic directions (27) and the upwind and downwind states as the values in the
neighbouring cells of the wall,

(Fit)ty oy = 5(Fojt Frpr ) diigayn — (|A.ﬁ’|6U)' . (31)
i+1/2,5

6.2. Fluz extrapolation - central/dissipation formulation
Concerning the new approach based on multidimensional flux extrapolation,
the convective terms of (25) are discretized using the central/dissipation for-
mulation (7)-(8) discussed in Sections 3 and 4 for the 2D convection schemes
of section 2.2. Consider the numerical flux in the z-direction for the convective
terms in (25) on a Cartesian mesh,

Sj2g = 30 (Wij + Wit1 ;) = Dig1ja,j

1 7. k (32)

Diy1/2,5 = 3diag(Bi, /5 ;) )0Wit1/2,5
where D represents the numerical dissipation matrix and diag(3*) is the diago-
nal matrix consisting of the numerical dissipation coefficient 3* of each of the 4
characteristic equations. Defining a Roe type linearization the total numerical
flux on an irregular mesh for e.g. wall i+1/2,j, is derived by HIRSCH & VAN
RANSBEECK [6],

(F-ﬁ);ﬂ/z,j = %(an + Fi+1,j)-ﬁi+1/2,j - %(P*diag(ﬂk)éw)iﬂ/zj (33)

The dissipation coefficient 8* is based on the convection speed (k) of (30),
and corresponds to the non-linear form of (11) or (21) for a specific first or
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second-order multidimensional convection scheme.
7. SOLUTION METHOD

The solution method for the discretized Euler equations (22) uses multigrid
acceleration. As smoothing procedure a Collective Symmetric Gauss-Seidel
(CSGS-) relaxation is applied. The 4 non-linear equations are solved by New-
ton’s method (local linearisation). Rewriting the non-linear system of dis-
cretized Euler equations for a cell 4, j on level k, yields,

(P sides (F-R)*AS)E, = (NH(UR)); 5 = (r*)i 5 (34)

where AS is the cell face length, r represents the right hand side and N(U)
the residual. In a cell not on the finest level the right-hand side is

rig = (NFUR))ij = (T (NFHH UL = rbH ), (35)

where I,’c“+1 is the restriction operator working on the defect N¥+1(U*+1)—pk+1,
In a cell on the finest level the right-hand side is

ri ;=0 (36)
One Newton iteration applied to (34) using (35) and (36) for cell i, j is defined
by

A(N*kUF), ;

(r*)i; — (N*U*);,; =
! ! o(U*)i;

(86U ;
(37)

(UF)ps = (UF)PS + (8U*); 5

]

The computation of the Jacobian matrix in (37) is based on a conservative
linearization of the central part of the first-order numerical flux (31),

((ﬁ-ﬁ)éentral)j:/z,j = ((F.ﬁ):entral); oyt ((A’.ﬁ)"AU)iH/z’j (38)
where

(AU)iz1/2,5 = 5(AUij + AUiya 5)
(39)
AU =01 —pgn

Writing out the residual for cell 7, j on time step n+1, and evaluating the term

o0U; j, one finds
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with
(ARt =221 = p*(Aa@)* P! (41)

Equation (41) is similar to (27), except that the eigenvalues have to be replaced
by respectively their positive/negative values.

8. RESULTS

All results are obtained using a 3 level V-cycle multigrid acceleration. A shock
reflection is investigated in a supersonic rectangular channel (0,4) % (0,1) using
a mesh of 48x16 cells with an inlet Mach number of 2.9 and a deflection angle of
10.94 degrees. Using the flux extrapolation approach, the monotone minimum
cross diffusion and non-monotone zero cross diffusion schemes, referred to as
the monotone and non-monotone compact scheme are tested, combined with
the characteristic directions along the grid normals, velocity and pressure gra-
dient. The iso-density lines and density distribution along section y = 0.5 are
shown respectively in Figures 5 and 6. Compared to classical first-order upwind
(Flux Difference Splitting) all compact results are showing a better resolution
near the shocks. Based on the pressure gradient, the monotone and especially
the non-monotone compact scheme show an improvement compared with a
classical second-order result. The characteristic directions based on the pres-
sure gradient blended with the velocity are shown in Figure 7. Considering the
monotone and non-monotone scheme in combination with pressure gradient,
a comparison between the variable extrapolation and the central/dissipation
approach shows a negligible difference in accuracy. The main advantage of
the central/dissipation approach is the improvement of convergence properties
and robustness (Figure 8). The variable extrapolation method requires the
freezing of the directions in order to converge to machine accuracy while for
the flux extrapolation no freezing is applied and a much better convergence
rate is reached. The monotone second-order zero cross diffusion scheme was
tested with different classical limiters based on the definition of the multidimen-
sional ratio r” (16). A comparison with the monotone minimum cross diffusion
scheme and non-monotone zero cross diffusion scheme in Figure 9 shows that
the van Albada limiter gives the sharpest resolution of the shock.

The second test case deals with a fully subsonic flow in a channel (0,4) x (0, 1)
with a 20% sinus bump on the lower wall. The inlet Mach number is 0.5 with
a mesh of 4816 cells. A comparison for the non-monotone zero cross diffusion
scheme, with classical first- and second-order results is shown in Figure 10,
11. The non-monotone scheme based on the pressure gradient shows the same
accuracy as the second-order classical result, except near the wall. Figure 12
shows the corresponding directions. Based on the flux extrapolation approach
an impressive improvement is reached for the convergence to machine accuracy
(Figure 13).
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9. CONCLUSIONS

A family of cell-centered genuinely 2D upwind algorithms based on characteris-
tic variable and flux extrapolation have been developed for structured meshes.
The latter formulation introduces the splitting of central and dissipation part.
This approach leads to new multidimensional dissipation models as an alterna-
tive to the standard 1D models. A monotone second-order zero cross diffusion
scheme has been developed, introducing classical limiters based on multidi-
mensional ratios. The flux extrapolation approach shows the advantage of im-
proving significantly the convergence properties and robustness of the schemes.
In addition, this formulation has the potential of generality and flexibility for
implementation in standard codes.
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FIGURE 5. Shock reflection, iso-density lines.
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FIGURE 6. Density distribution along section y = 0.5.

FIGURE 7. Characteristic directions ﬁp/f)’.
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FicURE 8. Convergence history-RMS density.

FIGURE 9. Investigation multidimensional limiters.
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FIGURE 10. Subsonic bump, iso-density lines.

FIGURE 11. Density distribution, section = = 2.0.
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FiGURE 12. Characteristic direction ﬁp/{)’.

FiGUure 13. Convergence history-RMS density.
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