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A family of cell�centered genuinely multidimensional upwind schemes for
structured meshes is developed� Two di�erent approaches for the numerical
�ux formulation are applied� based on respectively characteristic variable ex�
trapolation and �ux extrapolation� The latter is developed within the context
of the uni�ed central�dissipation formulation of classical central and upwind
schemes� The numerical �ux is based on a 	�wave decomposition model of
the 
D Euler equations using two arbitrary characteristic directions� A gen�
eral theoretical analysis of linear convection schemes is the framework for the
development of �rst� and second�order multidimensional upwind schemes� A
monotone second�order zero cross�di�usion algorithm is developed introduc�
ing classical limiters with multidimensional ratios assuring the monotonicity
property� Several combinations of algorithms with di�erent characteristic
directions are tested using a multigrid solver� Results near discontinuities
are showing a sharper resolution than grid aligned methods� A signi�cant
improvement is obtained with the central�dissipation approach concerning
robustness and �exibility for implementation of multidimensional methods in
standard codes�

�� Introduction

Algorithms with a genuinely multidimensional upwind approach for solving the
Euler�Navier�Stokes equations form the subject in this paper� This new ap�
proach aims at reducing the mesh dependency introduced by classical schemes
that are based on the dimensional splitting approach�
A family of �D multidimensional upwind schemes have been developed in the

past using a cell�centered �nite volume approach on structured meshes Hirsch
� Lacor ��	
 Lacor � Hirsch ��	� The basic theoretical framework developed
by Hirsch ��	 is the optimal diagonalization of the Euler equations into � wave
equations using a speci�c choice of two characteristic directions depending on
the local 
ow gradients� Hirsch � Lacor ��	 developed a conservative scheme
with the numerical 
ux evaluated using characteristic MUSCL extrapolation


��



i�e� variable extrapolation along the characteristic propagation directions� This
leads to a family of �rst and second�order accurate schemes with an improved
accuracy compared to classical methods� Since the higher�order characteristic
MUSCL was too expensive
 alternative second�order more compact schemes
have been looked for by Van Ransbeeck ���	�
A general theoretical study of �D linear compact convection algorithms is

developed by Hirsch ��	� Based on the truncation error expansion of a gen�
eral ��point molecule
 conditions concerning accuracy
 monotonicity and cross�
di�usion are determined for families of �� and ��point molecules�
In comparison with the characteristic variable extrapolation
 a new numeri�

cal 
ux formulation based on multidimensional 
ux extrapolation is developed�
The resulting numerical 
ux is written as a central 
ux with additional dis�
sipation terms� It forms a uni�ed approach for the classical central and up�
wind schemes including TVD high resolution schemes
 Hirsch ��	
 Swanson
� Turkel ���	� In the standard methods
 the multidimensional problem is
solved by a superposition of �D dissipation models based on di�erences along
the mesh lines� The genuinely multidimensional schemes to be discussed have
additional dissipation terms containing mixed di�erences representing the mul�
tidimensional character�
A unique zero cross�di�usion scheme is developed from the theoretical con�

vection analysis
 being second�order accurate for the homogeneous convection
equation� Based on similar ideas as for classical second�order TVD high reso�
lution schemes
 the second�order zero cross�di�usion scheme is made monotone
by rewriting it as a correction to a �D monotone �rst�order scheme
 modi�ed
by introducing non�linear limiters to ensure the monotonicity property�
The extension to the �D Euler equations is based on a generalized form of

the � wave decomposition method by introducing two arbitrary characteristic
directions� This allows the investigation of di�erent directions for optimization
of the multidimensional schemes�
Results are obtained with the CWI adaptive multigrid solver described in

Van der Maarel� Hemker � Everaars ���	� The multigrid structure is
combined with a simpli�ed implicit operator based on a conservative lineariza�
tion of the standard �rst�order upwind Flux Di�erence Splitting scheme� In
comparison with classical methods
 inviscid results will be shown for a subsonic
and supersonic test case on fully re�ned meshes�

�� �D upwind convection algorithms

���� Linear convection analysis
The main elements of a general theoretical analysis of the two�dimensional up�
wind schemes for the linear non�homogeneous convection equation
 Hirsch ��	
are repeated below� It is derived for compact molecules not exceeding nine
points� The analysis relies on the properties of the truncation error expansion

taking as starting point the computational nine�point stencil with arbitrary
coe�cients� Writing out the Taylor expansion for the convection equation


��



some of the coe�cients are speci�ed as to satisfy the consistency conditions�
General conditions are de�ned for properties such as second�order accuracy

monotonicity
 cross�di�usion and relations between some of these conditions
are determined� For the non�homogeneous equation the condition of vanish�
ing cross�di�usion is less severe than that of second�order accuracy� For the
homogeneous equation the condition of zero cross�di�usion is equivalent with
the condition of second�order accuracy� The study introduces several families
of schemes based on ��point and ��point molecules�
A �nite volume formulation of the convection algorithm is considered
 within

a cell�centered approach for structured meshes� Considering the same mesh
spacing equal to � in both directions
 the discretized convection term in cell
�i� j� is written as

aux � buy � a�ui�����j � ui�����j� � b�ui�j���� � ui�j����� ���

where the approximations selected for the cell face values ui�����j and ui�j����

characterize the schemes� The notation used in ��� is clari�ed by Figure ��

Figure �� Cell�centered �nite volume formulation�

De�ning upwind convection schemes for a� b � �
 we can focus the analysis
to smaller molecules of respectively � and � points in the upwind direction

with respect to point �� In the former case
 points �
 �
 �
 �
 � and � will be
involved
 while in the latter case
 only points �
 �
 �
 � contribute to the scheme�
In order to introduce multidimensional couplings in the upwind schemes
 the
cell face values should therefore be made dependent on several nodal values�
If ui�����j is made dependent on the nodal values at points �
 � and �
 the
resulting scheme will involve � points� Hence
 for ��point molecules
 ui�����j

should depend only on the nodal values at points � and �� In the following the
family of ��point molecules will be considered�
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���� Upwind schemes for ��point molecules
The ��point molecules
 for a� b � �
 are de�ned by the following extrapolation
formulae
 illustrated in Figure �a


ui�����j � u� � ��u� � u��

ui�j���� � u� � ��u� � u��
���

Figure �� The ��point molecules for linear convection schemes�

Writing out ��� with the use of ��� and representing the combination �a�� b��
by a parameter A
 the ��point convection scheme is uniquely de�ned in Figure
�b� It is important to observe
 that we have actually a one�parameter family
of schemes
 although the parameters � and � can be chosen independently�
Several interesting schemes are recovered by choosing a particular value of A
as shown by Hirsch ��	�

monotone �st order � � � A � min�a� b�

��nd order� zero cross di�usion � A �
a� b

�

���

Concerning the monotone �rst�order scheme the lower limit corresponds to the
�rst�order classical upwind scheme that has maximum cross di�usion� The up�
per limit represents the minimum cross di�usion scheme similar to the scheme of
Rice � Schnipke ��	� This scheme has been applied in e�g� Lacor � Hirsch

��	 and showed indeed a marked improvement in shock resolution
 compared
to standard �rst�order 
ux splitting methods� The unique non�monotone zero
cross�di�usion scheme
 can be considered as the only second�order compact
��point scheme in space for the homogeneous convection equation� The mono�
tone minimum cross di�usion scheme and the non�monotone zero cross di�u�
sion scheme have also been investigated by Sidilkover ��	 under the names of
respectively N �scheme and �D scheme�
Considering the case a� b � � we can reformulate the general ��point molecule
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from Figure �b by splitting the central part and dissipation term� Introducing
di�erence operators in e�g� the x�direction by

��xui�j � ui���j � ui���j � �
�
x ui�j � ui���j � ui�j � �

�
x ui�j � ui�j � ui���j ���

the residual is rewritten


�
a��x � b��y �

�
� �a�

�
x �

�
x � b��y �

�
y � �A�

�
x �

�
y �
�
ui�j ���

The dissipation term in ��� consists of classical �nd di�erence terms along
the mesh lines coming from the classical �rst�order upwind scheme and an
additional mixed second di�erence representing the multidimensional upwind
character�

�� Dissipation of multidimensional convection schemes

The family of linear ��point convection schemes described in section ��� for
positive convection speeds is reformulated for all combinations of signs of a
and b� The numerical 
ux at e�g� i� ���� j is de�ned as

f�i� �

�
�j � a�

�
b�

b
u��
i� �

�
�j
�
b�

b
u��
i� �

�
�j
� � a��

b�

b
u��
i� �

�
�j
�
b�

b
u��
i� �

�
�j

�
���

where the superscripts of the interface states represent the signs of the cor�
responding components a� b� The interface states are determined using the
generalized form of the extrapolation formulae ���� Introducing the splitting
of central and dissipation part of the numerical 
ux


f�i�����j �
�
�a�ui�j � ui���j�� di�����j ���

di�����j �
�
��i�����j�ui�����j ���

the numerical dissipation is given by

di�����j �
�
� jaj�ui�����j ��

�
a�

�
b�

b
�ui�j���� �

b�

b
�ui�j����

�

�a�
�
b�

b
�ui���j���� �

b�

b
�ui���j����

�� ���

with �ui�����j � ui���j � ui�j and �ui�j���� � ui�j�� � ui�j � Introducing �D
ratios the dissipation ��� can be rewritten in the form of ���� In contrast with
a �D de�nition of R
 built up by � consecutive 
ux di�erences taken along the
same mesh line
 one can de�ne �D ratios based on 
ux di�erences in the two
mesh directions� This �D de�nition introduces the dependence on the sign of
both velocity components a and b of the convection speed
 where the ratio is
de�ned in a �D upwind manner relative to the direction of convection speed�
Di�erent ratios have been investigated by Sidilkover ��	
 Hirsch � Van
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Ransbeeck ��	� In contradiction with the former
 the latter introduced a new
�D ratio which is related to the de�nition of the dissipation formulation ����
The �D ratio is de�ned such that a compact formulation is recovered which is
not the case in the �D formulation� As a result
 the six surrounding cell�centers
of the wall are considered for the determination of the ratio� Four ratios are
de�ned for every wall
 depending each on one of the � combinations of the signs
of a and b
 as shown in Figure �


Figure �� �D de�nition of ratios�

where the superscripts of R represent the signs of the corresponding components
a� b� The corresponding formulae are given by


R��
i�����j �

b��ui�j����

a��ui�����j
� R��

i�����j � �
b��ui�j����

a��ui�����j

R��
i�����j � �

b��ui���j����

a��ui�����j
� R��i�����j �

b��ui���j����

a��ui�����j

����

The resulting dissipation coe�cient � based on 
ux extrapolation is determined
from ��������


�i�����j � jaj � ��
jaj

jbj
��Ri�����j�

��R� � a��R�� �R��� � a��R�� �R���

����

In the non�linear case a Roe type linearisation is introduced in ��������� by e�g�

�f�i�����j � a�i�����j�ui�����j � �g
�

i�j���� � b�i�j�����ui�j���� ����

The value of the coe�cient � in ���� corresponds to the interpolation coe�cient
in ��� and is determined by the parameter A in ��� that represents a speci�c
multidimensional convection scheme� The interpolation coe�cients � and � for
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the monotone minimum cross di�usion scheme and second�order non�monotone
zero cross di�usion scheme are chosen by

�mo �
�

�
min

�
��
jbj

jaj

�
� �mo �

�

�
min

�
��
jaj

jbj

�

�nmo �
�

�

jbj

jaj
� �nmo �

�

�

jaj

jbj

����

�� Monotone second�order zero cross diffusion scheme

���� High resolution and monotonicity
The compact scheme with zero cross di�usion introduced in Sections ��� and
� will be more accurate than its �rst�order monotone counterparts� However

being non�monotone
 it will generate oscillations at discontinuities� The tech�
nique for avoiding this situation and for generating high resolution schemes
without numerical oscillations is well developed for classical second�order TVD
high resolution schemes
 Hirsch ��	� The basic ideas can be extended for mul�
tidimensional schemes� They consist of� i� selecting a �rst�order monotone
numerical 
ux� ii� extending the numerical 
ux to second�order accuracy� iii�
restricting the amplitude of the gradients appearing in the additional term
via non�linear multidimensional limiters
 such as to assure the monotonicity
property�
Based on the extrapolation formulae ���
 the non�monotone zero cross dif�

fusion scheme can be written as a correction to a �rst�order multidimensional
monotone scheme where the additional term is limited in a non�linear way to
assure a monotone zero cross di�usion scheme� Consider the linear case a� b � �


f�zci�����j � f�mo
i�����j � a��nmo � �mo��i�����j�ui�j����

g�zci�j���� � g�mo
i�j���� � b��nmo � �mo��i�j�����ui�����j

����

with

f�mo
i�����j � auij � a�mo�ui�j����

g�mo
i�j���� � bui�j � b�mo�ui�����j

����

where �mo
 �nmo and �mo
 �nmo are determined by e�g� ����
 and � represents
a limiter�
For one�dimensional 
ows
 the concept of TVD
 Total Variation Diminishing


has been developed �see for instance Hirsch ��	�
 leading to the introduction
of non�linear limiters� Unfortunately
 this concept does not appear to be well
adapted for multidimensional 
ows
 as shown by Goodman � Leveque ��	

although the ad�hoc application of the one�dimensional TVD approach
 coupled
to directional splitting of the convective 
uxes
 gives excellent results in prac�
tical codes� It is therefore appropriate
 for multidimensional con�gurations
 to
apply alternative criteria�
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A straightforward de�nition of monotonicity to be considered in a multidi�
mensional framework can be obtained by the approach of Spekreijse ���	

which appears as best suited in the present context� Based on the condition
that the sum of the coe�cients of the ��point molecule in Figure � has to be
zero
 the schemes are monotone or positive if all coe�cients except at point �
are of the same sign� This is the de�nition applied by Spekreijse ���	
 where
it is shown that a �D monotone scheme is TVD
 while this is not necessarily the
case in �D� The important consequence of the monotonicity condition is that
the steady state solution at �i� j� is a bounded average of the surrounding mesh
point values� Therefore
 no over� or undershoots can appear in the solution�

���� Multidimensional limiters
The limiter function � in equation ���� is acting on a �D ratio� Two de�nitions
of ratios for a� b � � are introduced
 e�g� at wall i� ���� j in Figure �


Figure �� De�nition of multidimensional ratios�

where rS represents the ratio investigated by Sidilkover ��	 and rD is the
ratio developed by Hirsch � Van Ransbeeck ��	� They are formulated by

�i�����j � ��ri�����j� with

rSi�����j �
a�u� � u��

b�u� � u��
� rDi�����j �

a�u� � u��

b�u� � u��

����

In the context of the central�dissipation splitting the de�nition of rD is most
suitable and is used in the present paper� The superscript D has been dropped
for clarity� In order to achieve a monotone second�order zero cross di�usion
scheme ����
 Hirsch � Van Ransbeeck ��	 showed that the multidimensional
limiter � is equal to a classical limiter based on the multidimensional ratio
considered
 that ful�lls
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� � ��r� � �� � �
��r�

r
� � ����

���� Equivalent dissipation terms
Introducing the central�dissipation approach ������� in the numerical 
ux of
the monotone zero cross di�usion scheme ���� for the linear case a� b � �
 the
dissipation is given by

dZCi�����j �
�
� jaj�ui�����j � a���mo � ��nmo � �mo���r

��
i�����j ���ui�j���� ����

A new ratio R is derived and the symmetry property of the classical limiters is
introduced


R �
�

r
� ��R� � ��

�

r
� �

��r�

r
����

where R corresponds to the de�nition in Figure � and ����� As a result the
dissipation term ���� is written as


dZCi�����j �
�

�
jaj�ui�����j

�a�
jaj

jbj

�
�moR

��
i�����j � ��nmo � �mo���R

��
i� �

�
�j
�
�
�ui�����j

����

Considering the four possible combinations of signs of a and b� a general for�
mulation of the dissipation coe�cient is derived

�ZCi�����j � jaj � �
jaj

jbj

�
�mo��Ri�����j� � ��nmo � �mo�����Ri�����j��

�
����

where the function � is determined by �����

	� Decomposition of the Euler equations

The theoretical diagonalisation based on characteristic theory
 Hirsch ��	 is
reformulated in a general way by considering the arbitrary choice of two char�
acteristic directions� The quasi�linear formulation of the �D Euler equations
can be derived from the conservative di�erential form


	U

	t
�
	F

	x
�
	G

	y
�

	U

	t
�A

	U

	x
�B

	U

	y
� � ����

based on the conservative variables U 
 with F 
 G representing respectively the

ux vectors in the x � and y � direction with corresponding Jacobians A and
B� A similarity transformation based on two arbitrary characteristic directions

�� 
�
 is de�ned by

P ����
�� 
�� �AP
��
�� 
�� � � �
�� 
�� � �C�
�� 
�� ����
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where P � is the transformation matrix with columns representing the right
eigenvectors of the Jacobian� The diagonal matrix � and the non�diagonal
matrix �C represent respectively the characteristic propagation speeds of the
diagonalisation and the source or coupling matrix� A set of characteristic vari�
ables can be constructed such that

	W � P ���	U ����

Using equations ���� � ����
 the Euler equations ���� are recast into the follow�
ing set of characteristic compatibility equations

	W

	t
� �� ��r�W � ��C��r�W � � ����

The corresponding expressions of Jacobians
 eigenvectors
 eigenvalues and char�
acteristic variables are presented explicitly in Hirsch� Lacor � Deconinck

��	� They show that the source terms in ���� are identical to zero if the two
characteristic directions are chosen such that

�
� � �rp � �� �
����
���r��v � �r��v � � ����

The �rst characteristic direction is chosen along the pressure gradient and the
second one is related to the strain rate tensor� Taking the characteristic direc�
tions along the gridnormals results in the standard diagonalisation of the linear
combination of the Jacobians with the gridnormal
 Yee ���	


P ���� �A��n�P � � � ��n ����


� Numerical flux formulation

���� Characteristic MUSCL extrapolation
The characteristic system of non�linear scalar convection equations ���� with
possible source terms is discretized using a cell�centered �nite volume approach
for structured meshes� An upwind discretization is used for the convective part
and a central scheme for the possible coupling terms� The general formulation
of the numerical 
ux based on the characteristic MUSCL extrapolation derived
by Hirsch � Lacor ��	
 is written as

��F ��n��i�����j �
�
� �
�F�
i�����j �

�F�i�����j���ni�����j

� �
�P

�

i�����j

			� ��n
			
i�����j

�W�

i�����j �W�
i�����j�

����

where W�
i�����j and W�

i�����j are the interface values with the superscripts �

and � indicating upwind and downwind extrapolations with respect to the
direction of the outward pointing unit normal �n on the cell face� Notice that
the characteristic variables W 
 the eigenvectors P � and eigenvalues � ��n are
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based on Roe averages and two arbitrary characteristic directions 
�� 
� on the
appropriate wall� The �rst term between brackets in the right�hand�side of ����
is calculated using

��F���n�i�����j � �F ��n�U�i�����j�

U�
i�����j � Ui�j � P ��W�

i�����j �Wi�j�

U�i�����j � Ui���j � P ��W�

i�����j �Wi���j�

����

that is based on ����� The variations of the characteristic variables in ���� � ����
are obtained using one of the compact multidimensional convection algorithms
from Section � under the form of variable extrapolation� The determination
of left and right state corresponding to a chosen algorithm depends on the
characteristic propagation directions


�
��� � �
��� � �v� �
��� � �v � c �
�� �

��� � �v � c �
� ����

with �
�k� the propagation direction corresponding to component wk of W �
The classical �rst�order upwind scheme based on 
ux di�erence splitting is

recovered from ���� by considering the grid normals as the two characteris�
tic directions ���� and the upwind and downwind states as the values in the
neighbouring cells of the wall


��F ��n��i�����j �
�
� �
�Fi�j � �Fi���j���ni�����j �

�
�

�
j �A��nj�U

�
i�����j

����

���� Flux extrapolation � central�dissipation formulation
Concerning the new approach based on multidimensional 
ux extrapolation

the convective terms of ���� are discretized using the central�dissipation for�
mulation ������� discussed in Sections � and � for the �D convection schemes
of section ���� Consider the numerical 
ux in the x�direction for the convective
terms in ���� on a Cartesian mesh


W �

i�����j �
�
� x�Wi�j �Wi���j��Di�����j

Di�����j �
�
�diag��

k
i�����j��Wi�����j

����

where D represents the numerical dissipation matrix and diag��k� is the diago�
nal matrix consisting of the numerical dissipation coe�cient �k of each of the �
characteristic equations� De�ning a Roe type linearization the total numerical

ux on an irregular mesh for e�g� wall i����
j
 is derived by Hirsch � Van

Ransbeeck ��	


��F ��n��i�����j �
�
� �
�Fi�j � �Fi���j���ni�����j �

�
� �P

�diag��k��W �i�����j ����

The dissipation coe�cient �k is based on the convection speed �
�k� of ����

and corresponds to the non�linear form of ���� or ���� for a speci�c �rst or
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second�order multidimensional convection scheme�

�� Solution method

The solution method for the discretized Euler equations ���� uses multigrid
acceleration� As smoothing procedure a Collective Symmetric Gauss�Seidel
�CSGS�� relaxation is applied� The � non�linear equations are solved by New�
ton�s method �local linearisation�� Rewriting the non�linear system of dis�
cretized Euler equations for a cell i� j on level k
 yields


�
P

sides�
�F ��n��!S�ki�j � �Nk�Uk��i�j � �rk�i�j ����

where !S is the cell face length
 r represents the right hand side and N�U�
the residual� In a cell not on the �nest level the right�hand side is

rki�j � �Nk�Uk��i�j � �I
k
k���N

k���Uk���� rk����i�j ����

where Ikk�� is the restriction operator working on the defectN
k���Uk����rk�� �

In a cell on the �nest level the right�hand side is

rki�j � � ����

One Newton iteration applied to ���� using ���� and ���� for cell i� j is de�ned
by

�rk�i�j � �N
kUk�i�j �

	�NkUk�i�j
	�Uk�i�j

���Uk�i�j

�Uk�newi�j � �Uk�oldi�j � ��U
k�i�j

����

The computation of the Jacobian matrix in ���� is based on a conservative
linearization of the central part of the �rst�order numerical 
ux ����


�
��F ��n��central

�n��

i�����j
�
�
��F ��n��central

�n
i�����j

�
�
� �A��n�n!U

�
i�����j

����

where

�!U�i�����j �
�
� �!Ui�j �!Ui���j�

!U � Un�� � Un
����

Writing out the residual for cell i� j on time step n��
 and evaluating the term
�Ui�j 
 one �nds

	�NU�i�j
	�U�i�j

� � �A��n��i�����j � �
�A��n��i�j���� � �

�A��n��i�����j � �
�A��n��i�j���� ����

��



with

� �A��n�� �
	��F ��n��

	U
� P ��� ��n��P ��� ����

Equation ���� is similar to ����
 except that the eigenvalues have to be replaced
by respectively their positive�negative values�

�� Results

All results are obtained using a � level V �cycle multigrid acceleration� A shock
re
ection is investigated in a supersonic rectangular channel ��� ������ �� using
a mesh of ����� cells with an inlet Mach number of ��� and a de
ection angle of
����� degrees� Using the 
ux extrapolation approach
 the monotone minimum
cross di�usion and non�monotone zero cross di�usion schemes
 referred to as
the monotone and non�monotone compact scheme are tested
 combined with
the characteristic directions along the grid normals
 velocity and pressure gra�
dient� The iso�density lines and density distribution along section y � ��� are
shown respectively in Figures � and �� Compared to classical �rst�order upwind
�Flux Di�erence Splitting� all compact results are showing a better resolution
near the shocks� Based on the pressure gradient
 the monotone and especially
the non�monotone compact scheme show an improvement compared with a
classical second�order result� The characteristic directions based on the pres�
sure gradient blended with the velocity are shown in Figure �� Considering the
monotone and non�monotone scheme in combination with pressure gradient

a comparison between the variable extrapolation and the central�dissipation
approach shows a negligible di�erence in accuracy� The main advantage of
the central�dissipation approach is the improvement of convergence properties
and robustness �Figure ��� The variable extrapolation method requires the
freezing of the directions in order to converge to machine accuracy while for
the 
ux extrapolation no freezing is applied and a much better convergence
rate is reached� The monotone second�order zero cross di�usion scheme was
tested with di�erent classical limiters based on the de�nition of the multidimen�
sional ratio rD ����� A comparison with the monotone minimum cross di�usion
scheme and non�monotone zero cross di�usion scheme in Figure � shows that
the van Albada limiter gives the sharpest resolution of the shock�
The second test case deals with a fully subsonic 
ow in a channel ��� ������ ��

with a ��" sinus bump on the lower wall� The inlet Mach number is ��� with
a mesh of ����� cells� A comparison for the non�monotone zero cross di�usion
scheme
 with classical �rst� and second�order results is shown in Figure ��

��� The non�monotone scheme based on the pressure gradient shows the same
accuracy as the second�order classical result
 except near the wall� Figure ��
shows the corresponding directions� Based on the 
ux extrapolation approach
an impressive improvement is reached for the convergence to machine accuracy
�Figure ����

��




� Conclusions

A family of cell�centered genuinely �D upwind algorithms based on characteris�
tic variable and 
ux extrapolation have been developed for structured meshes�
The latter formulation introduces the splitting of central and dissipation part�
This approach leads to new multidimensional dissipation models as an alterna�
tive to the standard �D models� A monotone second�order zero cross di�usion
scheme has been developed
 introducing classical limiters based on multidi�
mensional ratios� The 
ux extrapolation approach shows the advantage of im�
proving signi�cantly the convergence properties and robustness of the schemes�
In addition
 this formulation has the potential of generality and 
exibility for
implementation in standard codes�
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Figure 	� Shock re
ection
 iso�density lines�
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Figure 
� Density distribution along section y � ����

Figure �� Characteristic directions ��p��v�
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Figure �� Convergence history�RMS density�

Figure 
� Investigation multidimensional limiters�
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Figure ��� Subsonic bump
 iso�density lines�

Figure ��� Density distribution
 section x � ����
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Figure ��� Characteristic direction ��p��v�

Figure ��� Convergence history�RMS density�

��


